Multipliers in semihoops

  • Ting Qian School of science, Xi’an Shiyou University, Xi’an, 710065, China
  • Wei Wang Department of Basic Courses, Shaanxi Railway institute, WeiNan, 714000, P.R. China
  • Mei Wang School of Mathematics and Statistics, Weinan Normal University, Weinan 714099, P.R. China
Keywords: Semihoop, multipliers, closure operator

Abstract

Semihoops play an important role in the study of fuzzy logic based on left continuous t-norms. In this paper, we introduce the notion of multipliers in semihoops and investigate some related properties of them. Also, we discuss the relations between multipliers and closure operators in semihoops. Moreover, we focus on algebraic structures of the set IM(L) of all implicative multipliers in semihoops and obtain that IM(L) forms a Heyting algebra, when L is an MT L-algebra.

Downloads

Download data is not yet available.

References

Bosbach B, Halbgruppen K. Axiomatic und Aritmetik. Fundamenta Mathematicae, 1969, 64:257-287.

Bosbach B, Halbgruppen K. Axiomatic und Quotienten. Fundamenta Mathematicae, 1970, 69:1-14.

Wang J T, Xin X L, He P F, Monadic bounded hoops. Soft Computing, 2018, 22:1749-1762.

Wang M, Xin X L, Wang J T, Implicative pseudo valuations on Hoops, Chinese Quarterly Journal of Mathematics, 2018,33:51-

Ferreirim I M A. On varieties and quasivarieties of hoops and their reducts. Ph. D. thesis, Vanderbilt University,

Nashvile,Tennessee, 1992.

Blok W J, Ferreirim I M A. hoops and their Implicational Reducts. Algebraic Methods in Logic and Computer Science, Banach

Center Publications, 1993, 28:219-230.

Blok W J, Ferreirim I M A. On the structure of hoops. Algebr Universalis, 2000, 43:233-257.

H´ ajek P. Metamathematics of fuzzy logic. Trends in logic-Studia Logica Library, 1998, 4:155-174.

He P F, Zhao B, Xin X L. States and internal states on semihoops. Soft Computing, 2017,21:2941-2957.

Esteva F, Godo L, H´ ajek P, Montagna F. hoops and fuzzy logic. Journal of Logic and Computation, 2003, 13(4):532-555.

R. Larsen, An introduction to the theory of multipliers, Berlin: Springer-Verlag, 1971.

Cornish. W.H, The Multiplier Extension of a Distributive Lattice, Journal Of Algebra, 32 (1974) 339-355.

Schmid. J, Multipliers on distributive lattices and rings of quotients.I, Houston Journal of Mathematics, 6(3) (1980) 401-425.

Kim. K. H, Multipliers in BE-Algebras, International Mathematical Forum, 6(17) (2011) 815-820.

Chaudhry. M. A, Ali. F, Multipliers in d-algebras, World Applied Sciences Journal, 18(11) (2012) 1649-1653.

Khorami. R.T, A. Borumand Saeid, Multiplier in BL-algebras, Iranian Journal of Science and Technology, 38A2 (2014) 95-

Borzooei R A, Kologani M A, Local and perfect semihoops. Journal of Intelligent & Fuzzy Systems, 2015,29:223-234.

Published
2019-11-29
How to Cite
Ting Qian, Wei Wang, & Mei Wang. (2019). Multipliers in semihoops. IJRDO -JOURNAL OF MATHEMATICS, 5(11), 01-06. https://doi.org/10.53555/m.v5i11.3346